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in e-skin is mainly concerned with  
perceiving external stimuli (exteroception),  
and only a few studies have focused on 
real-time monitoring of the shape of soft 
robots (proprioception).[2] Body compliance  
and shape adaption enable soft robots to 
perform unique functions in confined 
spaces,[3] conformable interactions,[4] and 
walking over rough terrains for delivery.[5] 
Koivikko et al. reported a curvature sensor 
based on screen-printed silver conductors 
to monitor the operating status of soft 
grippers.[6] Li et al. integrated a distributed 
curvature sensor array with a soft manipu-
lator to reconstruct its shape.[7] Despite 
the accuracy of shape sensing in these 
studies, additional sensors that can per-

ceive external stimuli are still necessary for these soft robots in 
practical applications. Therefore, an e-skin that can reconstruct 
the shape and simultaneously react to the surrounding environ-
ment is highly desired for diversifying the capabilities of soft 
robots with a simplified structure.[8]

In addition to e-skins, progress in machine learning (ML) 
techniques has provided abundant opportunities for developing  
more advanced soft robots. The combination of e-skin and 
ML techniques allows soft robots to perform a given task in a 
more intelligent manner, and the results are often beyond our 
expectations. For instance, Tao et  al. employed convolutional 
neural networks to learn the deformations of a soft gripper 
for real-time object classification.[9] Meerbeek et  al. imple-
mented a neuro-inspired hyperdimensional computing algo-
rithm for the real-time gesture estimation of soft robots.[10] 
Schlagenhauf et al. exploited reinforcement learning to achieve 
dynamic manipulation of soft robot hands.[11] The outstanding 
performance of ML in exploiting datasets is suitable for  
analyzing sensing signals, especially in sensor arrays, which are 
usually characterized by the generation of numerous data in a 
small period. Even small differences in signals that are often 
neglected by humans can be precisely discerned by ML. There-
fore, the combination of machine learning and shape-sensing 
e-skins is expected to enable the development of soft robots 
with advanced artificial intelligence, eventually resulting in arti-
ficial systems that can rival the abilities of biological organisms.

This study proposes a shape-sensing electronic skin (SSES) 
based on a differential piezoelectric matrix that can arm soft 
robots with both proprioception and exteroception abilities by 
integrating machine learning techniques. Each building block 
of the SSES contains a conductive fabric sandwiched between 
two polyvinylidene fluoride (PVDF) membranes. The outputs 

Inspired by natural biological systems, soft robots have recently been devel-
oped, showing tremendous potential in real-world applications because of 
their intrinsic softness and deformability. The confluence of electronic skins 
and machine learning is extensively studied to create effective biomimetic 
robotic systems. Based on a differential piezoelectric matrix, this study 
presents a shape-sensing electronic skin (SSES) that can recognize surface 
conformations with minimal interference from pressing, stretching, or other 
surrounding stimuli. It is then integrated with soft robots to reconstruct their 
shape during movement, serving as a proprioceptive sense. Additionally, the 
robot can utilize machine learning to identify various terrains, demonstrating 
exteroception and pointing toward more advanced autonomous robots 
capable of performing real-world tasks in challenging environments.

ReseaRch aRticle
 

1. Introduction

Soft robots are extensively studied as promising candidates 
to bridge the gap between machines and biological organ-
isms owing to their intrinsic softness.[1] Soft robots are usually  
equipped with various sensors that can provide target infor-
mation from the surrounding environment to enable their 
effective performance. As a comprehensive platform that can 
accommodate multimodal sensors or even sensor arrays, e-skin 
technology presents a promising strategy for further aug-
menting the ability of soft robots. However, current progress 
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of these two PVDF membranes are identical when pressing 
or stretching is inflicted. Therefore, these interferences can be 
easily discerned and minimized using a differential strategy, 
resulting in satisfactory robustness for sensing bending.  
Proprioception is enabled for soft robots, as demonstrated by 
the reconstruction of surface conformations during crawling 
using data collected by the SSES. The precision reaches 
0.0025°, and the response time is 36 ms, which is compatible 
with the majority of the application scenarios of soft robots.[12] 
Furthermore, based on the acquired variations in shape, this 
study establishes a dynamic model, which can further deduce 
the crawling distance, gesture, and velocity for modulation and 
calibration. Exteroceptive ability is realized when a machine-
learning strategy is introduced to analyze the SSES-acquired 
data. For instance, soft robots can identify various terrains 
or barriers, thus exhibiting advanced artificial intelligence. 
We expect that the SSES and its combination with machine 
learning techniques can provide a general approach for  
augmenting and diversifying the ability of soft robots to thrive 
in real-world applications.

2. Results and Discussion

2.1. Configuration and Characterization of SSES

Figure 1a presents an explosive illustration of the sand-
wiched structure of the SSES and a 3D schematic of its 
integration with a typical soft-crawl robot. The enlarged 
inset depicts the layered structure of the building blocks of 
the SSES, which exhibits mirror symmetry with respect to 
the layer of the conductive fabric (polyester cloth, 110  µm 
in thickness). This layer also serves as a common ground 
electrode, and two piezoelectric sensing units are placed 
on both sides. Each unit consists of a PVDF (thickness of 
28  µm, polarized along the thickness) film sandwiched 
between two Ag electrodes, and the entire device is pack-
aged by the outermost silicon layers. The robustness of the 
SSES is elaborated using a cross-sectional view of a building 
block, as shown in Figure 1b. The conductive fabric is signifi-
cantly thicker than the adjacent PVDF films; therefore, the  
neutral layer, a non-strained layer upon bending, is located 
within the conductive fabric, as indicated by the red dashed line. 
Hence, strains produced on the two PVDF films (PVDF A and 
B) are expected to be opposite when the building block is bent, 
and identical when subjected to pressing or stretching; these 
are the two common influences during bending sensing.[13] 
This assumption is verified by the measured outputs  
shown in Figure 1c–e; details of the measurement are available  
in Note S1 (Supporting Information). The building block is 
bent to form a convex curvature with an angle of 150°, and 
the acquired waveforms shown in Figure  1c are similar in  
magnitude but opposite in polarity; this is consistent with the 
simulated results shown in Figure S1 (Supporting Informa-
tion). However, the outputs of the two PVDF films are almost 
identical when the building block is stretched or pressed, 
as shown in Figure  1d,e, and Figure S2 (Supporting Infor-
mation). This feature inspired us to employ a differential 
approach to minimize interferences during sensing.

This approach is effective even in more complex situations, 
where bending is inflicted during stretching or pressing. As 
shown in Figure  1f, the outputs of PVDF A and B exhibit the 
same tendency when a stretching force is applied, and a pair of 
reversed peaks is generated when bending is inflicted. Similar 
profiles are observed in the case of pre-pressing, as shown in 
Figure S3 (Supporting Information). Although the stretching/
pressing force causes a certain shift in the neutral layer, the 
differential values remain nearly the same, as illustrated in  
Figure S4 (Supporting Information). A theoretical analysis of 
the output performance is presented in Note S2 (Supporting 
Information). Another salient merit of the sandwiched struc-
ture is the apparent improvement in the magnitude of its sig-
nals. As demonstrated in Figure S5 (Supporting Information), a 
14-time higher peak-to-peak value is delivered when compared 
to that of a single-layer structure (7 V vs 0.5 V). This enhance-
ment may be because the conductive fabric serves as an approx-
imate translational layer (see Note S4, Supporting Information).

The linearity of the output signals is examined in Figure 1g, 
indicating a linear relationship with R2  = 0.9953 for angles 
ranging from 24.6° to 172.8°. Meanwhile, the sensitivity is  
calculated to be 0.146 V deg−1,[14] laying the foundation for high-
resolution applications of SSES in robotics and healthcare 
fields.[15] Figure S6 (Supporting Information) shows that the 
limiting resolution of the SSES can reach 0.0025°, and it can be 
further enhanced by employing a more sensitive signal acquisi-
tion system or developing materials with higher piezoelectric 
properties. The SSES also demonstrates a fast response feature  
(36  ms), long cycle stability, and satisfactory robustness to 
other common influences, as plotted in Figure S7 (Supporting  
Information). These merits of the SSES ensure its broad appli-
cations in soft robotics.

2.2. SSES Fabrication and Shape Reconstruction

The perception of surface conformations plays an essential 
role in acquiring the real-time operating status of soft robots, 
thereby providing opportunities for establishing reliable con-
trol systems to realize realistic applications. Figure 2a and 
Figure S8 (Supporting Information) illustrate a facile strategy 
for building an SSES-integrated soft robot. PVDF is selected to 
fabricate the SSES because it can directly convert mechanical 
agitation into electrical output. The main body of the SSES 
was fabricated by laser cutting and magnetron sputtering, and 
the corresponding electrical connections were processed using 
mature printed circuit board (PCB) technology. The ultrathin 
thickness (<200  µm) and flexibility enable the conformal and 
compact assembly of SSES in soft robots. Further, serpentine 
electric wires in addition to island-structured PVDF films form 
an “island bridge”, an electrically conductive network that  
provides a certain stretchability for SSES.

Figure  2b shows a scheme for reconstructing a curved  
surface using the SSES-collected data. Specifically, an SSES 
array was first integrated on the target surface, and curvatures 
at given spots were detected by the building blocks of the array. 
All these local curvatures were analyzed and processed using 
computers to restore the conformation. Here, we consider a 
typical soft crawl robot, 170 mm in length and 80 mm in width, 
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as an example. The size of each block, a key parameter of the 
SSES, was optimized to 2.5 mm to achieve a balance between 
signal magnitude and spatial density (see Figure S9a, Sup-
porting Information). Thus, 28 blocks in total were integrated 
into the SSES to reconstruct its overall shape; details can be 
found in Figure S9b (Supporting Information). As each block 
consists of two sensing units, a LabVIEW-based multichannel 
synchronous data-acquisition system was developed to simul-
taneously acquire 56 sets of sensing signals. These 56 sets of 
voltage signals were converted to corresponding curvatures 
and displayed on a monitor using software developed based on 
Unity (Figure S10, Supporting Information). With this strategy, 

a close similarity was observed between the deformed soft 
robot and the corresponding reconstructed shape, as shown in 
Figure 2c and Movie S1 (Supporting Information).

In addition to the recovery of static surfaces, we also demon-
strated the reconstruction of dynamic surfaces using an SSES. 
An Arduino-based gas control program was developed to enable 
the programmable bending of the soft robot’s legs for crawling. 
Real-time bending angles at the four specified spots (Figure S9e,  
Supporting Information) on the feet could be acquired by the 
SSES, as shown in Figure  2d. The crawling process and the 
reconstructed version are demonstrated in Movie S2 (Sup-
porting Information). Note S5 (Supporting Information) further 

Adv. Mater. 2023, 2211385

Figure 1. Configuration and characterization of SSES. a) Illustration of the SSES-mediated soft robot assembly. b) Illustration of a sensing block under 
bending. c) Open-circuit voltage output of the two units when bending under an angle of 150°. d,e) Output performance under stretching (0.2 mm) 
(d) and pressing (6.6 N) (e). f) Voltage output under bending simultaneously with stretching. g) Linear relationship between measured angles and 
voltage output, ranging from 24.6° to 172.8°.
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establishes a kinetic model based on the SSES-acquired signals, 
and various dynamic parameters, such as crawling velocity and 
distance, can be deduced. Hence, not only the perception of 
surface conformation but also the awareness of dynamic fea-
tures is realized for soft robots owing to SSES integration.

2.3. Dynamic Behavior of the Robot on  
Various Terrain Surfaces Revealed by SSES

The variation in the bending status of the soft robot’s limbs not 
only introduces a change in conformation but also indicates  

their physical interactions with the ambient environment. 
This encouraged us to perceive the surrounding environment 
through the data collected by SSES. Figure 3a shows a sketch 
of a soft robot crawling over several representative terrains. 
These terrains can be discerned by the surface roughness, 
which is normally related to the friction coefficient. Figure S11 
(Supporting Information) depicts the measured normal force 
and friction coefficients when the soft robot crawls on these 
terrains; further details can be found in Note S6 (Supporting 
Information).

The flow diagram in Figure  3b illustrates the principle of 
identifying different terrains via the statistical analysis of the 

Adv. Mater. 2023, 2211385

Figure 2. SSES fabrication and shape reconstruction. a) Craft flow diagram of the SSES. The laser cutting, magnetron sputtering, and organic soldera-
bility preservatives (OSP) technology facilitate the batch fabrication of SSES, and the flexible printed circuit boards increase the reliability of sensory 
array interconnection. b) Schematic of the reconstruction based on the sensor array. c) Computational reconstruction of the soft robot’s bending. d) 
Measured angle curves of four sensing blocks during typical crawling motions of a soft robot. Different colors are highlighted to mark phases.
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SSES-acquired data. First, the SSES-integrated soft robot was 
made to crawl over five different terrains (Figure S12, Sup-
porting Information), and its gestures during crawling were 
simultaneously captured by a high-frame camera. Subse-
quently, the SSES-collected signals were statistically analyzed 
and compared with the differences in the optical images. 
Although the five outlines of soft robots during crawling exhibit 
an overall similar shape, as shown in Figure 3c and Figure S13  
(Supporting Information), significantly small angular differ-
ences in the four limbs existed during crawling, as revealed by 
the frame-by-frame optical images, as shown in Figure S14a  
(Supporting Information), and the detected data from the 
attached commercial inclination sensors, as shown in Figure S14b  
(Supporting Information). This can be explained by the fact 
that the larger the surface roughness, the higher the friction 
that resists the bending deformation of the robot, and a smaller 
maximum bending angle (MBA) is expected (Figure S14c,  
Supporting Information).

To verify this assumption, the maximum bending angles 
during crawling were extracted from the SSES-acquired data 
after the statistical analysis. As shown in Figure  3d, the A4 
paper, which had the lowest roughness among the five terrains, 
resulted in the highest MBA of the soft robot. In contrast, sand-
paper or soft rubber, which demonstrated larger roughness, 
resulted in a smaller MBA during crawling. Furthermore, this 
phenomenon is supported by the differences in crawling speed, 
as shown in Figure  3e, in which the fastest crawling speed is 

obtained on A4 paper, whereas the speed on soft rubber or 
sandpaper is considerably slower. These detailed differences 
during the crawling process enable us to develop a rapid and 
reliable strategy based on the SSES to identify different terrains.

2.4. Environment Awareness of SSES-Integrated  
Soft Crawling Robot

Analysis based on reconstructed conformation usually relies 
on complicated image processing techniques, and the interac-
tion between soft robots and their surrounding environment 
can be statistically reflected by SSES-measured data. Thus, 
we attempted to employ machine learning (ML) technology to 
further exploit SSES-acquired data to realize environmental 
awareness. To establish an optimal ML training model, efforts 
have been made to examine the appropriate feature extrac-
tion method and optimized algorithm (Figures S15–S17 and  
Table S1, Supporting Information). The node-oriented decision 
tree algorithm was preferred because the signals were inter-
leaved, and this method enabled us to build multiple decision 
trees and consider the average to fully exploit the advantages of 
various models. Moreover, the fact that only sensing units at cer-
tain specific spots exhibit pronounced responses is expected to 
maximize the benefits of node classification.[16] The processing 
procedure is shown in Figure 4a. The features were extracted 
before the analysis. Voltage signals instead of derived angles 
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Figure 3. Dynamic moving behavior analysis of a soft robot crawling on various terrain surfaces. a) Schematic of the soft robot crawling over various 
terrains. The enlarged views are optical images of different terrain surfaces. b) Flow diagram for verifying the feasibility of sensing ambient environment 
based on SSES-acquired data. c) Outlines of the bottom surface of the soft robot when it crawls over various terrains. d) The mean maximum bending 
angle at the spot of the robot’s left forefoot, measured by SSES over 10 trials. Error bar denotes standard error of the mean. e) Average crawling speed 
of the soft robot when it crawls over different terrains.
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Figure 4. Environment awareness of SSES-integrated soft crawling robot. a) Flow diagram of the machine learning process. The bagged tree algorithm 
is chosen. b) Conceptual illustration of the soft robot for environment recognition. c,d) Optical images of the experiment scenarios. e) Terrain surface 
training with five-fold cross-validation (five different trained pavements with varying roughness). Classification confusion matrix with an overall accuracy 
of 98.0%. White text values are percentages of correct predictions, and cyan text values are percentages of correct predictions. The color bar represents 
the amount of the predicted proportion. f) Identification of five new terrains that have not been trained to demonstrate the generalization ability of 
the developed model. The new A4 paper is printed with ink; the new printed pattern is printed with smaller embossment and different materials; the 
new metal is slightly polished; the new sandpaper’s grit size is 20% smaller (from 80# mesh to 100# mesh); the new soft rubber is contaminated with 
dust. g) Mixed recognition of all the aforementioned environments, with an overall accuracy of 98.2%.
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were employed as raw data because more information was con-
tained in the directly measured signals, which is beneficial for 
improving the accuracy of ML analysis. The standard deviation, 
median, and mean of the raw data were extracted as features. 
After classification, these features were packaged into several 
decision tree algorithms for training, and the results of the five-
fold cross-validation and new datasets test were obtained.

Figure  4b depicts the expected conceptual illustration of an 
SSES-integrated soft robot for environment recognition after 
its confluence with the ML technique. Figure S18 (Supporting 
Information) shows the classification results of different grit 
sizes of sandpapers, indicating that roughness is the only indi-
cator of identification. Figure  4c shows that five terrains with 
different roughness values can be identified by a series of  
statistical data combined with ML with a high accuracy of 98.0%, 
indicating the feasibility of the developed model. To examine 
the generalization ability of this model, the modified terrains 
(Figure  4d; Figure S19, Supporting Information) were added to 
the prediction set: the new A4 paper is printed with ink, which 
actually decreases the surface roughness owing to the presence 
of carbon; the printed pattern is modified with smaller patterns 
and different materials; the new metal is slightly polished; the 
grit size of the new sandpaper is reduced from 80# mesh to 100# 
mesh; the new soft rubber is covered with dust. The integration 
of ML analysis with the SSES-armed robot results in a satisfac-
tory identification accuracy of 96.7% (Figure 4e).

Similar to the roughness of terrains, different weight loads, 
inclinations, and obstacles induce corresponding variations in 
sensing signals, implying that identifying these parameters 
using ML is feasible. The training scenarios and real-time 
variations in the signals are shown in Figure 4f and Movie S3 
(Supporting Information). Here, fivefold cross-validation was 
conducted, using four sets of data for training and one set for 
testing. Further details can be found in Experimental Section. 
After training, a road with a slope of 10° in either the uphill 
or downhill directions could be recognized with an accuracy 
of 97.8% (Figure S20a, Supporting Information), the positions 
of barriers on the road could be discerned (Figure S20b, Sup-
porting Information), and the weights of the carried items 
could be recognized (Figure S20c, Supporting Information).

Furthermore, to explore the comprehensive perception of 
the environment, we mixed all 20 terrain/barrier/load condi-
tions in the identification test (Figure S21 and Table S2, Sup-
porting Information). The results show an overall accuracy of 
98.2%, as shown in Figure  4g. It is noteworthy that although 
the employed decision tree algorithm is credited with a cer-
tain degree of generalization, the accuracy is unsatisfactory 
when this model is confronted with some out-of-distribution 
problems, especially for those involving multiple sensations 
simultaneously. This deficiency is attributed to the vulnerability 
of the decision tree algorithm. The use of deep neural networks 
or increasing data richness to obtain more information on the 
environment is expected to further improve this model.

3. Conclusion 

A shape-sensing electronic skin (SSES) was developed to sense 
the dynamic status of soft robots during operation. The limiting 

resolution was 0.0025°, and the external interferences were 
minimized owing to the differential piezoelectric matrix with 
a coplanar mirror sandwiched structure. This study proposed 
two processing principles regarding SSES-measured data.  
Specifically, we first developed a general strategy for recon-
structing the surface conformations of soft robots according 
to SSES-obtained data, thus enabling the proprioceptive abili-
ties of soft robots. In addition, we introduced machine learning 
(ML) technology to analyze SSES-generated data for identi-
fying different terrains, loading weights, and obstacles, thus 
endowing soft robots with exteroceptive abilities and primary 
intelligence. SSES and its integration with ML techniques lay 
the foundation for soft robots to effectively acquire their own 
status and interact with the environment in a sophisticated 
manner. We expect that this paradigm will inspire more inno-
vations that allow soft robots to swiftly cope with challenges in 
real-world applications.

4. Experimental Section
Shape-Sensing Electronic Skin (SSES) Fabrication: The SSES was 

composed of two pieces of piezoelectric film (polyvinylidene difluoride, 
PVDF, 28  µm in thickness, MEAS) with silver electrodes (Epoxy 
conductive adhesive, 6  µm in thickness, LX-30 Yinxi) on both sides, 
a thin flexible conductive fabric (Polyester cloth, 110  µm in thickness, 
Ebenda 8869) with glue on both sides, a pair of flexible printed board 
(100 µm in thickness), and a thin layer of silicone (≈1 mm in thickness, 
Eco-flex 0030, Smooth-On) encapsulation. The fabrication of the sensor 
pair began by preparing two films of PVDF with silk screen printed 
silver glue on one side. Then the two PVDF films (the sides with silver 
glue) were symmetrically pasted on both sides of the double-sided 
adhesive conductive fabric (110 µm in thickness, Ben Yida). The size of 
the conductive fabric was larger than the PVDF film, which facilitated 
subsequent fixation. Then flatly affix the raw sandwich structure on a 
Plexiglas substrate (2 mm in thickness, Creromem) of appropriate size 
that was cleaned with alcohol, removed air bubbles. After that, three 
steps of laser cutting were required. First, the upper layer of PVDF was 
cut using the laser-cutting machine (PLS6. 75) with appropriate focal 
length (2 mm), power (18%), and cutting speed (70%), which required 
dot positioning through the designed pattern. Second, flip to the other 
side was flipped and the previous dots were used to position the new 
face, and the laser parameter was the same as last step. Third, having 
prepared the sensing matrix, the same method was used to define 
boundaries (focal length (2  mm), power (80%), and cutting speed 
(50%)). As can be seen, accurate positioning is very important, especially 
for the first time, which usually requires multiple points of repeated 
positioning. Afterward, a single fluorinated polyethylene terephthalate 
(PET) film (50 µm in thickness) mask, whose pattern was slightly smaller 
than that of the PVDF sheets and defined by laser cutting, was placed on 
the patterned PVDF film, fixing by previous adhesive conductive fabric. 
The whole surface was kept clean and electroplate it with magnetron 
sputtering apparatus (Cr/Ag, 10 nm/100 nm in thickness). Finally, in an 
alcohol environment, mechanically peeled off the defined structure from 
the Plexiglas substrate. Here, PVDF is superior to other piezoelectric 
material because PVDF is a polymer with lower thermal conductivity 
than other piezoelectric materials, which increases the precision of laser 
processing by allowing heat to be concentrated more easily.[17]

As for the connecting wire, a soft, thin polyimide film covered with 
copper (80  µm in thickness in total) is employed as a substrate, and 
the serpentine patterned design enables its flexibility and stretchability, 
meeting the tiny displacement when it bends. On the polyimide 
substrate, copper wires with width of 0.15 mm and spacing of 0.1 mm 
are etched as the electrodes (Figure S2, Supporting Information). The 
width and spacing of the electrode lines on the inside are consistent, 
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so that the interconnection electromagnetic interference is minimized. 
The resistance difference caused by the change in the length of the outer 
side is also consistent by appropriately modifying the line width and 
height. Organic Solderability Preservatives (OSP) technology was used 
to selectively overlay printed circuit board, so that the signal could be 
well exported. The flexible electrode board is only 0.1 mm thick and can 
be well attached to the conductive cloth substrate without affecting its 
bending. Besides, the areas where the board contacts the sensors are 
only 0.45  mm2, which is much smaller than the area of the sensors 
themselves, so as to further reduce the influence of the electrode wires 
on bending and ensures the output consistency.

The packaging of the SSES was carried out in the printed mold. 
The 1:1 (Eco-flex A: B) mixed eco-flex was spread on the bottom of the 
mold, and then it was put into the sensor array, and then the mold was 
filled with eco-flex and the bubble was removed with pointed tweezers, 
waiting for 2 h at room temperature, and it was mechanically peeled off 
from the mold.

Soft Gripper and Robot Fabrication: The soft four-jaw gripper is made 
of Eco-flex (0030, Smooth-on), nylon wires (Fashion Fish), rubber hose 
(2 mm in inner diameter, Takuhiro), and silicone adhesive (Smooth-on 
Sil-Poxy). Eco-flex A and B was mixed in a same ratio, stirred evenly, and 
placed in a 3D-printed mold. A vacuum pump (Pritchett AP-01P) was 
employed to remove bubbles. After 2 h of resting at room temperature, 
gripper was removed from the mold and nylon wire was wrapped 
around it. Then a thin layer of eco-flex was applied to the griper wrapped 
in nylon wire. The preparation method of the soft crawl robot body is 
basically the same as that of gripper, yet nylon wire’s is unnecessary. The 
fabrication of the software robot has already been reported, and here 
is a focus on the process of bonding with the sensor array. Similarly, a 
thin layer of eco-flex is applied to the bottom of the SSES, then the soft 
body is placed in the appropriate position, the edges are further sealed 
with eco-flex, and settled to cure. Once cured, the rubber hoses, which 
use silicone adhesive to seal with the soft body, are used for connecting 
Arduino-controlled Solenoid valves and pumps.

Data Acquisition and Processing: The voltage output collection of the 
SSES was accomplished mainly by voltage preamplifier (Keithley 6517 
System Electrometer). And only in the data acquisition process for ML 
is the multi-channel data acquisition system (National Instrument 4300, 
internal resistance is ≈140 MΩ) applied. Here, the customized interactive 
control software programed by LabVIEW completes the analog-to-digital 
conversion and records the data. When studying the characteristics of 
a single pair, the signal is generated by the patch in series between the 
linear motor (Linmot, E1100). Also, an ultra-high precision manual linear 
slide (NFP-x462, Zolix) is employed for accuracy calibration. The whole 
measurement process of the system was fixed on the optical platform. 
Moreover, the mechanical measurement of the sensor pair was done 
by a high-precision commercial force sensor (Oruda, AT8301), and the 
mechanical data were directly read and stored by its matching software.

The soft crawling robot dynamical system is composed of four 
parts: pump (Jie Dong SP-36-9), solenoid valve group (Airtac 025-06),  
controller (Arduino), and amplifier. The pump provides stable air 
pressure and leads to the solenoid valve group via a rubber hose, the 
sequence switch of the solenoid valve group is controlled by an external 
amplifier of the Arduino controller, and the outlet of the solenoid valve is 
connected to the soft robot porosity. The airtightness of the rubber hose 
is guaranteed by a silicone adhesive.

In the recognition with ML, the data were directly collected and 
recorded by the multi-channel data acquisition system and the 
corresponding LabVIEW program, and further processed by Origin to 
reduce data dimensions and extract the characteristic data. The learning 
algorithm was provided by the MATLAB toolbox. The standard deviation 
of the 50 signals of the gripper and the 56 signals of the crawling robot 
as a set of data were designed. More specifically, the multi-channel data 
were imported into Origin, and Origin’s mathematical statistics were 
used to calculate a series of parameters such as standard deviation, 
variance, and mean, and the feasibility of these data after dimensionality 
reduction was compared to the corresponding algorithm. Meanwhile, 
fivefold cross-validation was conducted here. To make the data of 

input lists to be more comprehensive, two more features, the mean 
and median, were extracted from the raw data, and learning the three 
kinds of feature data simultaneously could increase the final recognition 
accuracy by 1.5% (Figure  4g). After training and prediction, the results 
were further imported into origin for normalization, visualization, etc. 
During the experiment for terrains recognition, all these tested surfaces 
were tightly adhered to a desktop while no visible move, wrinkle, or 
bulge would be produced when the soft robot was crawling on. Besides, 
the thin thickness of these substrates (0.1-3 mm) could further reduce 
the influence from compliance.31 Hence, interferences from surface 
compliance are supposed to be very limited in surface roughness 
experiments. As for the adhesion resulted from chemical properties, 
silicone rubbers, such as eco-flex and PDMS, are mainly consists of 
SiO2 which is chemically inert to a majority of chemicals in ambient 
conditions. And no chemical interactions have been reported among 
silicon rubber and five surfaces employed in our experiment. Thus, the 
influence caused by chemical adhesion could be reasonably excluded.

The reconstruction of soft crawling robots is validated by 
reconstruction system based on Unity and data acquisition system 
based on LabVIEW. We designed and encode a new LabVIEW program 
that allows voltage information to be read directly from data acquisition 
cards (National Instrument 6356), and through the collaboration of 
multiple collection cards, we have achieved data acquisition of arrays. 
The collected data is read by the Unity program (Version 2019.4.25f1c1), 
and after simple data processing such as filtering, differential, and 
proportional conversion, the voltage signal is converted into an angle 
value, which gives dynamic changes to the joints of the model in Unity. 
It is worth noting that the joint bending system is based on a relative 
coordinate system, and the movement of the limbs near the main body 
is implicated.

Statistical Analysis: All raw statistical data were collected by NI 
acquisition cards in conjunction with the LabView program, as described 
in Experimental Section 4.3. In the feature extraction process, the mean, 
standard deviation, median, and maximum values are obtained by 
entering the original data into Origin and obtaining the corresponding 
statistics data with its statistical module. In the image recognition 
feature extraction procedure, Origin is used to produce the waveform 
graph, and then the MATLAB program extracts the image gray difference 
statistics, including mean, contrast, and image entropy. Additionally, 
Origin is used in the heat map to normalize the data from multiple 
channels in order to enable the observation of the rules between 
different types of data. Other simple data processing tasks, such as 
differentiation, angle conversion, filtering, and so on, are handled by 
the Origin toolkit. Moreover, all error bars are presented in mean ± SD, 
and 10 points from each set of data are taken to calculate the mean and 
standard deviation. When conducting the recognition with the gripper, 
each object is grasped ≈50 times. And except for objects such as blades 
and bananas, which can only be grasped from a fixed direction, the 
direction of each grasp is random and changeable, so that the total data 
set (containing 43  500 sets) is obtained. In environment recognizing, 
the total data (containing 25  125 sets) are acquired through crawling 
on objects 30 times (Among them, the zero-weight and flat-road group 
are the same data). The training and testing datasets for objects and 
environment recognition are randomly selected from the total dataset.
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